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Beam dynamics in a nonlinear uniform focusing channel is studied from the viewpoint of keeping emittance
of a high current beam. Conservation of beam emittance is treated as a problem of proper matching of the beam
with the uniform focusing channel. To obtain matching conditions for a beam with an arbitrary distribution
function, it is necessary to accept that the potential of the external focusing field contains higher-order terms
than quadratic. The solution for the external potential is obtained from the stationary Vlasov’s equation for the
beam distribution function and Poisson’s equation for the electrostatic beam potential. An analytical approach
is illustrated by results of a particle-in-cell simulation.@S1063-651X~96!09105-2#

PACS number~s!: 07.77.2n, 29.27.Eg, 41.75.2i, 52.25.Wz

I. INTRODUCTION

The nonlinear space-charge field of a beam is a serious
concern for beam emittance growth in particle acceleration
facilities. This effect is most pronounced when particles are
slow and space-charge forces are significant. The problem of
beam emittance growth due to a nonstationary beam profile
in a focusing channel with a linear focusing field has been
treated in many papers~see Refs.@1–12#, and cited refer-
ences there!. The general property of space-charge-
dominated beam behavior is that a beam with an initial non-
linear profile tends to become more uniform and this process
is associated with strong emittance growth and the appear-
ance of beam halo. In Fig. 1 an example of beam dynamics
with an initial Gaussian profile in a uniform focusing channel
is presented. After a few transverse oscillations, the mis-
matching of the initial beam profile results in the appearance
of a uniform beam core accompanied by a halo formation.

The beam emittance is conserved if the beam is matched
with the channel. The problem of matching of the nonlinear
density profiled beam with a linear uniform focusing channel
was studied in detail in Refs.@12–15#. The analytical ap-
proach is based on the fact that the Hamiltonian of the
matched beam is a constant of motion, and therefore the
unknown distribution function can be expressed as a function
of the Hamiltonian:
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In Eq. ~2! the parameterk2 describes the focusing of particles
in solenoids or a smoothed external focusing in an
alternating-gradient structure andUb(x,y) is the space-
charge potential of the beam. Combination of Eqs.~1! and

~2! with Poisson’s equation gives the integral equation for
the self-consistent space-charge potential of a beam in a fo-
cusing channel:
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whereq is a charge of particles and«058.85310212 F/m is
the permittivity of vacuum. After finding the space-charge
potential of the beamUb , the self-consistent distribution
function can be found using Eq.~1!. A general property of
the solution is that with increasing beam current, the profile
of the matched beam has to be more and more flat while the
phase space projection~beam emittance! has to be more and
more close to a rectangle.

Laboratory beams are usually far from the above solution
and suffer serious emittance growth~see Fig. 1!. It is inter-
esting to verify whether it is possible to match a realistic
beam with a focusing channel. Instead of finding a self-
consistent distribution in the linear focusing channel one can
try to adjust the external potential in such a way that the
given beam distribution will be preserved. As shown in Ref.
@16#, matching of a realistic beam with a uniform focusing
channel can be achieved if the focusing field is not linear
anymore. In this paper we present the required focusing po-
tential as a series in power of beam current.

II. MATCHING OF THE BEAM WITH ARBITRARY
DISTRIBUTION FUNCTION

To find the matching conditions for a beam with an arbi-
trary distribution function, let us assume as in Eqs.~1! and
~2! that the beam is matched with the channel. Hence, the
Hamiltonian is a constant of motion but no assumptions
about linearity of focusing forces are adopted:
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The total potential of the structure is a combination of the
external focusing potentialUext and the space-charge poten-
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tial Ub of the beam,U5Uext1Ub . The time-independent
distribution function of a matched beam obeys Vlasov’s
equation:
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where the partial derivative of the distribution function over
time is omitted due to initial matched conditions. The distri-
bution function of the beam is supposed to be given from the
source of particles of the beam. Therefore, the self-potential
of the beamUb is also a known function derived from Pois-
son’s equation:
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wherer(r ) is the space-charge density of the beam. Com-
bining solutions of Vlasov’s equation for the total potential
of the structure,U, and space-charge potential of the beam,
Ub , obtained from Poisson’s equation, the external potential
of the focusing structure can be found:

Uext5U2Ub . ~7!

The solution of this problem has to be found for every spe-
cific particle distribution.

III. GAUSSIAN BEAM MATCHED WITH THE CHANNEL

Let us consider az-uniform beam with a Gaussian distri-
bution function in four-dimensional phase space, which is
close to the experimentally observed beam distribution:
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This distribution makes an elliptical phase space projection
at every phase plane with normalized root-mean-square
~rms! beam emittance:
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Substituting the distribution function~8! into Vlasov’s equa-
tion yields an expression for the total unknown potential of
the structure:
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Vlasov’s equation can be separated into two independent
parts forx andy coordinates, respectively:
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FIG. 1. Beam profile~left column!, phase
space projections~middle column!, and space-
charge forces~right column! of a nonstationary
beam in the linear focusing channel. Discrepancy
between the space-charge forces for nearby par-
ticles comes from projection of radial forces on
the x axis,Ex5E(r )x/r , where the ratioE(r )/r
is different for particles with fixed positionx.
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Combining solutions of Eq.~11!, the total potential of the
structure is a quadratic function of coordinates, which creates
linear focusing fieldEtot :
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The appearance of quadratic terms in the total potential of
the structure is quite clear because phase space projections of
the beam have elliptical shape and an ellipse is conserved in
a linear field. The space-charge field of the beamEb is cal-
culated from Poisson’s equation using a known space-charge
density function of the beamrb :
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wherer052I /(pcbR2), I is the beam current, andb is the
longitudinal velocity of particles. Subtraction of the space-
charge field from the total field of the structure gives the
expression for the external focusing field of the structure,
which is required for conservation of beam emittance:
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whereI c54p«0mc3/q5A/Z33.133107 A is a characteris-
tic value of the beam current. The relevant potential of the
focusing field is given by the expression
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Let us note that the external potential of the structure con-
sists of two parts: quadratic~which produces linear focusing!
and higher order terms that describe nonlinear focusing. The
linear part depends on the values of beam emittance and
beam current while the nonlinear part depends on beam cur-
rent only. This means that the external field has to compen-
sate the nonlinearity of self-field of the beam and produce
required linear focusing of the beam to keep the elliptical
beam phase space distribution. Figure 2 illustrates the rela-
tionships between space-charge field of the beam, total field,
and focusing field of the structure. The external focusing
field obtained from the above consideration is a complicated
function of radius, which is linear near the axis and becomes
nonlinear far from the axis. One of the ways to create the
required focusing potential is to introduce inside the trans-
port channel an opposite charged cloud of particles~plasma
lens! with the space-charge density:
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In Fig. 3 the charged particle density of the transport beam
and the external focusing beam are presented.

IV. ‘‘WATER BAG’’ AND ‘‘PARABOLIC’’ BEAM
MATCHED WITH THE CHANNEL

The analogous result can be obtained for a beam with
other distributions with elliptical symmetry. Let us consider
uniformly populated four-dimensional~4D! hypervolume in
four-dimensional phase space, which is called the ‘‘water
bag’’ distribution @2#:
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The coefficient 2/3 in Eq.~18! is chosen from normalization
of the distribution and reflects the fact that the maximum
beam sizes for such a distribution areA3/2 larger than rms

FIG. 2. Total field of the structureEtot @Eq. ~12!#, required ex-
ternal focusing fieldEext @Eq. ~15!#, and space-charge field of the
Gaussian beamEb @Eq. ~14!#.

FIG. 3. Charged particle density of the transport beam with
Gaussian distribution@Eq. ~13!# and of the external focusing beam
@Eq. ~17!#.
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beam parametersR andp0. This distribution is characterized
by a parabolic space-charge density function in real space:

r~r !5
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3R2D . ~19!

The solution of Vlasov’s equation is the same as for the
potential described by Eq.~12!. The space-charge field of the
beam is a two-term function of radius
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The corresponding external focusing field is given by the
expression
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In Fig. 4 the space-charge potential, total field, and required
focusing field of the structure or the beam with the water bag
distribution are presented. As in the case of a Gaussian beam
the required focusing field is close to a linear function of
radius near the axis and drops nonlinearly far from the axis.

For the ‘‘parabolic’’ distribution@2# phase space density
of particles monotonically decreases from the center of the
beam until the boundary of four-dimensional hypervolume:
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Maximum beam sizes for such a distribution are& larger
than rms beam parametersR andp0, which is reflected in the
coefficient 2 in the denominator of the distribution in Eq.
~22!. The space-charge density function of the beamrb and
electrical field of the beamEb are defined by the following
expressions:
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The relevant focusing field that is required to conserve beam
emittance is given by the expression
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In Fig. 5 the space-charge field, total field, and required fo-
cusing field of the structure for the beam with the parabolic
distribution are presented.

V. RESULTS OF PARTICLE-IN-CELL SIMULATIONS

To verify the possibility of conservation of beam emit-
tance in a nonlinear focusing field, a beam dynamics simu-
lation using particle-in-cell codeBEAMPATH @17# has been
performed. A beam of particles is represented as a collection
of large number~usually 1.33104! trajectories. Equations of
motion are integrated using a time-centered second-order in-
tegrator with constant time stepDt ~‘‘leap-frog’’ method!
@18#:

pW i11/25pW i21/21qEW iDt,

rW i115rW i1vW i11/2Dt. ~26!

The value of discrete time stepDt in simulation is chosen
small enough~1022,...,1023 of particle oscillation period!
that the results of simulations are insensitive to the changes

FIG. 5. Total field of the structureEtot @Eq. ~12!#, required ex-
ternal focusing fieldEext @Eq. ~25!# and space-charge fieldEb @Eq.
~24!# of the beam with parabolic distribution.

FIG. 6. Emittance growth of the Gaussian beam in the linear
focusing channel~upper curve! and emittance conservation in non-
linear focusing channel~lower curve!.FIG. 4. Total field of the structureEtot @Eq. ~12!#, required ex-

ternal focusing fieldEext @Eq. ~21!# and space-charge fieldEb @Eq.
~20!# of the beam with ‘‘water bag’’ distribution.
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of Dt. The space-charge field of az-uniform beam is found
from a two-dimensional Poisson’s equation in Cartesian co-
ordinates:

]2Ub

]x2
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]2Ub

]y2
52

r~x,y!
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. ~27!

The Dirichlet boundary condition for potentialUb is imposed
on the surface of an infinite rectangular pipe with transverse
sizesa3a. The region occupied by an ensemble of particles
is divided into uniform rectangular meshes of dimensionNX
3NY52563256. The charge of every particle is distributed
among the nearest four nodes inversely proportional to the
distance of the particle from each node. To obtain a solution
of Poisson’s equation, the space-charge density of the beam
and the unknown potential functions are represented as Fou-
rier series:
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Ūu,vsinS pui

NX D sinS pv j
NY D . ~29!

Calculation of the series is performed using a fast Fourier
transformation method. Space-charge and potential expan-
sion coefficients are connected by an algebraic relationship
following Poisson’s equation:

Ūuv5
r̄uv

«0@~pu/a!21~pv/a!2#
, ~30!

which gives the solution of the space-charge problem. Elec-
tric field components are calculated by numerical differentia-
tion of the potential grid function.

In Figs. 6 and 7 the results of the beam dynamics study
with initial Gaussian distribution in linear and nonlinear fo-
cusing channels are presented. Parameters of the beam were
chosen as follows:A/Z51, I52 A, «50.12p cm mrad,
R50.15 cm,b50.0178. The external focusing potential for
the linear focusing channel was taken as

Uext~r !5
mc2

q S «2

2R4 1
I

I cbR
2D r 2, ~31!

which corresponds to the matched conditions for an equiva-
lent Kapchinsky-Vladimirsky~KV ! @13# beam with the same
rms beam emittance« and rms beam sizeR. In the case of

FIG. 7. Mismatching of the Gaussian beam in
the linear focusing channel~left column! and
matching of the same beam with the nonlinear
focusing channel~right column!.
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nonlinear focusing, the external potential is represented by
Eq. ~16!. Let us note that quadratic terms in potentials~16!
and ~31! are different.

From results of simulations, it is seen that in both cases
the sizes of the beam in real space are close to constant,
which is typical for matching of the beam, taking into ac-
count rms beam sizes. But in the case of linear focusing, the
beam is mismatched in the phase plane, which results in 50%
emittance growth accompanied by halo formation. At the
same time the beam is completely matched with the nonlin-
ear focusing channel, and this results in conservation of all
beam characteristics and does not suffer any serious emit-
tance growth.

VI. FOCUSING BY A STATIC FIELD

The required external focusing field obtained from the
above consideration is a complicated function of radius,
which is linear near the axis and drops nonlinearly far from
the axis. This specific feature of the focusing field restricts
the possible ways to produce the appropriate potential distri-
bution. Axial-symmetric electrostatic and magnetostatic
lenses have aberrations that increase the focusing of charged
particles with radius as compared with linear focusing@12#.
A time-independent field provides a focusing effect that can
be described by a linear term as well as higher-order terms.
The paraxial equation of radial motion of a particle in the
electrostatic lens with the field distribution along the axis
Ez(z) is given by
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wherePu is an azimuth component of canonical momentum
of particle. After passing through the lens the slope of the
particle trajectoryr is changed as follows:

Dr 852
r

f
~11Car

2!, ~33!

where f is a focal length of the lens andCa is a spherical
aberration coefficient. From Eq.~33! it follows that the
changing of slope of trajectory is larger for particles with
larger radius. Spherical aberrations of axial-symmetric lenses
result in hollow beam profile formation and emittance
growth @12#.

Most of the focusing channels are based on alternating-
gradient principle employing alternating focusing-defocusing
quadrupole lenses with linear focusing field distribution
across the aperture. The higher-order multipole lenses~sex-
tupoles, octupoles, etc.! create essentially nonlinear field due
to azimuth variation of potentialUext5U0r

ncosnu. Focusing
and defocusing directions are repeated after azimuth angle
shift Du5p/n. The potential of the quadrupole alternating-
gradient focusing channel is presented as follows:

U~r ,w,z!5
G2~z!

2
r 2sin2w1

G6~z!

6
r 6sin6w1••• ,

~34!

whereG2(z) is a quadrupole gradient andG6(z) is a duode-
capole component. To create the required nonlinear compen-

sation of space-charge field in two orthogonalx-y directions
the sign of the duodecapole componentG6(z) should be op-
posite to the sign of the quadrupole componentG2(z). Let us
consider the one-dimensional problem for a particle oscillat-
ing in the field~34!:

m
d2x

dt2
5q@G2~z!x1G6~z!x5#. ~35!

We restrict our consideration to a FD~focusing-defocusing!
structure, where all lenses have the same lengthD and the
period of the structure isS52D. The solution of the problem
can be represented as a combination of the slow varying
deviation of the particle from axisX and the fast oscillating
variable j. Employing an averaging method@19# one can
obtain the following equation for slow variableX, which is
essential for the definition of the focusing properties of the
channel:

d2X

dt2
1m0

2FX16
G6

G2
X5G50, ~36!

wheret5z/S is a dimensionless longitudinal coordinate and
m0 is a frequency of the smoothed oscillations in the FD
structure:

m05
G2D

2

&~mc2/q!b2
. ~37!

FIG. 8. Phase space projections of the beam in the pure quad-
rupole FD structure~left column! and in quadrupole structure with
duodecapole component~right column!: ~a! initial beam; ~b! after
10 lenses;~c! after 20 lenses.
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Let us consider a beam with the parabolic distribution~22!.
The field required to conserve beam emittance for parabolic
particle distributions is given by Eq.~25!. It consists of terms
proportional tor , r 3, andr 5, while the field of the FD struc-
ture consists of termsx,x5. Let us choose the parameters of
quadrupole structure from the conditions that fields~25! and
~36! are equal to each other near the axis, where only linear
focusing terms are essential, and at the boundary of the beam
at r5&R. It gives the following expressions for the field
gradient and for the duodecapole component:

G25A8
mc2b

qRD S «2

R2 1
3I

I cb
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G652
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We present in Figs. 8 and 9 the results of beam dynamics
simulation in the FD structure withG2536 kV/cm2, G6521

kV/cm6; D51 cm for the beam withA/Z51,W5150 keV,
I5100 mA, «50.2p cm mrad, R51 cm. As shown, the
beam emittance shape is better conserved in the focusing
channel with the duodecapole component while the rms
emittance growth is smaller in the channel with the pure
quadrupole field. It confirms the assumption that the nonlin-
ear focusing field component compensates nonlinear space-
charge field but at the same time creates strongx-y coupling,
which itself is a source of emittance growth. The beam with
arbitrary nonlinear distribution cannot be exactly matched
with the quadrupole channel, but better matching as far as
the whole phase space area occupied by the beam is con-
cerned can be achieved in the channel with the nonlinear
focusing component. Strongx-y coupling arising from the
duodecapole component does not allow one to use this field
for beam matching with the high value of phase space den-
sity. In numerical experiments the effect of nonlinear space-
charge field compensation and, therefore, beam matching
was observed for beams with the value of phase space den-
sity no more than 0.6 A/cm mrad.

VII. CONCLUSIONS

Conservation of beam emittance was treated as a problem
of proper matching of the beam with a uniform focusing
channel. Matched conditions for the beam with elliptical
phase space projections but nonlinear space-charge forces in
a uniform focusing channel require the focusing field to in-
clude nonlinear terms of higher order than quadratic. The
solution for the external potential is attained from the station-
ary Vlasov’s equation for the beam distribution function and
Poisson’s equation for the electrostatic beam potential. The
focusing field produces linear focusing near the axis of the
structure but has to change nonlinearly away from the axis.
Different examples of Gaussian, ‘‘water bag’’ and ‘‘para-
bolic’’ distributions in 4D phase space are considered. Re-
sults of a particle-in-cell simulation confirm the conservation
of beam emittance in a nonlinear external field.
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